[CONTRIBUTION FROM THE CHEMICAL LABORATORY OF THE UNIVERSITY OF CALIFORNIA]

The Heat Capacities and Entropies of Silver and Lead from 15° to 300°K.

By P. F. Meads, W. R. Forsythe and W. F. Giauque

The work presented here is a continuation of the heat capacity measurements reported in the previous paper¹ together with a discussion of all the results.

The same single crystal technique described for preparing samples of aluminum¹ and copper¹ was used to prepare similar samples of silver and lead. Electrolytic silver 99.99% pure was melted and crystallized in an atmosphere of nitrogen and cooled over a period of five days. The sample weighed 1066.69 g. = 9.888 g.-atoms.

Lead containing no silver or bismuth and but 0.001% of iron was used. Lead oxide was removed by a preliminary melting with fused sodium hydroxide. The oxide free lead was then melted and crystallized in the form of a suitable cylinder in a vacuum furnace. The cooling extended over a period of four days. The weight of the lead was 1162.84 g. = 5.6116 g.-atoms.

TABLE I

HEAT CAPACITY OF SILVER

Atomic	weight	107	.880:	0°C.	=	273.	10	Ϋ́κ.
				· · ·				

	-							
<i>Т</i> . °К.	C_{p_*} cal. deg. ⁻¹ gatom ⁻¹	<i>T</i> , °K.	$\begin{array}{c} C_{p_*} \\ \text{cal. deg.}^{-1} \\ \text{gatom}^{-1} \end{array}$					
Crystal made 5-12-31 to 5-16-31								
	Series 1, Calorim	eter 1, 6-12-	-31					
63.78	3.603	180.9 6	5.716					
67.94	3.807	186.45	5.743					
73.02	4.030	192.04	5.776					
78.13	4.231	197.96	5.797					
83.28	4.389	203.43	5.820					
88.50	4.533	209.10	5.849					
93.63	4.665	215.06	5.882					
98.88	4.803	220.86	5.875					
104.06	4.915	226.50	5,895					
109.09	5.017	232.30	5.919					
114.24	5.088	238.25	5,945					
119.53	5.174	244.03	5.975					
124.95	5.209	249.65	5.989					
130.53	5.280	255 .40	6.005					
136.27	5.352	260.36	6.026					
141.77	5.409	265.83	6.033					
145.44	5.445	271.20	6.058					
149.50	5.506	276.83	6.079					
154.40	5.524	282.51	6.095					
159.45	5.564	288.11	6.111					
164.86	5.628	291.37	6.034					
170.37	5.638	292.26	6.054					
175.58	5.671	297.81	6.097					

(1) Gianque and Meads, THIS JOURNAL, 63, 1897 (1941).

lorimeter 1.	Series 6. Calorimeter 1.			
531	7-12-35			
0.153	14.43	. 152		
0.481	17.09	.260		
0.677	20.11	. 421		
0.997	Series 7 Co	lorimetor 3		
1.402	3_3	1_20		
1.883	10.00	1-00 045		
2.299	10.99	. 240		
2.712	18.99	. 394 199		
3.052	21.28	.482		
3.357	23.78	. 003		
	27.29	.918		
	31.32	1.248		
orimeter 1.	35.50	1.639		
7-3-31		2.016		
0 191	45.16	2,414		
0 323	49.80	2.758		
21.80 0.496		lorimeter 3,		
0.100	5-27-39			
	14.22	0.134		
lorimeter 2.	15.85	$.172^{a}$		
-35	18.23	.306		
0 179	21.69	.511		
250	25.27	. 759		
.208	28.61	1.024		
.542	Sample melted	and recrus-		
753	tallized 6-14-3	9 to 6-17-30		
	Series 9 Calorin	neter 3 6-24-		
	39			
lorimeter 2.	14 64	143		
3-35	16.15	201		
169	18.49	.321		
.248	21 90	523		
.348	25.93	.816		
	orimeter 1, 5-31 0.153 0.481 0.677 0.997 1.402 1.883 2.299 2.712 3.052 3.357 orimeter 1, -31 0.191 0.323 0.496 lorimeter 2, -35 0.172 .259 .370 .542 .753 lorimeter 2, 3-35 .169 .248 .348	orimeter 1.Series 6. Ca $5-31$ $7-1$ 0.153 14.43 0.481 17.09 0.677 20.11 0.997 Series 7. Ca 1.402 $3-3$ 1.883 16.99 2.299 16.99 2.299 16.99 2.712 21.28 3.052 21.28 3.652 23.78 3.57 27.29 31.32 orimeter 1. 40.07 -31 45.16 0.191 49.80 0.323 Series 8. Ca 0.496 Series 8. Ca $5-2$ 14.22 lorimeter 2. 15.85 18.23 0.172 259 25.27 $.370$ 28.61 $.542$ Sample melted $.753$ tallized 6-14-3 $Series 9.$ Calorir 39 lorimeter 2. 14.64 $3-35$ 16.15 $.169$ 18.49 $.248$ 21.90 $.348$ 25.93		

^{*a*} It is possible that this result should be increased by 10% due to a one minute error in timing the energy input.

Heat capacity measurements from 15-300°K. were made in the calorimeter described in the previous paper.¹

Since the heat capacities of silver and lead do not decrease to very low values at 15°K. these substances were placed in another calorimeter so that they could be measured at lower temperatures. The arrangement did not prove very satisfactory, due to difficulty in removing adsorbed helium from silk and bakelite covered wire in the insulating vacuum space, so we will omit a description of the second calorimeter. At the temperatures of liquid hydrogen the second calorimeter was quite satisfactory and the data given for silver in Series 4 and 5 of Table I were obtained with this apparatus. All of the heat capacity data on silver, obtained with calorimeters 1 and 2, are given in Table I which also includes data obtained with calorimeter number 3 which will be mentioned later. One calorie was taken as 4.1833 international joules.

The results of Series 4 and 5 are about 10%higher in the range $15-25^{\circ}$ K., than those obtained in Series 2 and 3 with the first calorimeter. When this was noted it was assumed that one of the two calorimeters must be subject to some unknown error. The sample was replaced in the first calorimeter and the results were then found to be in agreement with Series 4 and 5. These data are given as Series 5. A natural assumption was that some error had occurred during Series 2 and 3 and we reëxamined the data of these series hoping to find the source of the discrepancy. Many ways of checking the results were available but no evidence of error could be found. The resistance thermometer had been checked against the vapor pressure of hydrogen and the standard thermocouple also had been found to read correctly at these temperatures. Comparison of the resistance of the thermometer-heater as obtained from current-voltage observations during energy input and when used as a thermometer eliminated possible error in energy measurement. The corrections due to heat transfer from the surroundings were normal. At this point it was necessary to postpone further work and the data were withheld from publication pending further investigation.

Series 2 and 3 had been made forty and fortyeight days, respectively, after the preparation of the single crystal and it was thought that perhaps some time effect had been responsible for the different results obtained four years later in series 4 and 5. To check this point the sample which had stood for eight years was placed in a third calorimeter. The results, which are given as Series 7 and 8, agreed with Series 4, 5 and 6. This was not unexpected.

The metal was then re-melted in a vacuum (an atmosphere of nitrogen had been used in the previous crystallization) and a single crystal prepared as before. The solidification and cooling required three days. Series 9 was measured seven days after the preparation of the new crystal and agreed with Series 4, 5, 6, 7 and 8 seemingly eliminating time effect as an explanation of the low results in Series 2 and 3. The measurements of all series contain a continuous record of observations from the lowest to the highest temperatures. Thus a discrepancy of about 10%between 15 and 25°K. represents a completely measured 10% difference in heat content over this interval. Since an independent check of energy input was available, as mentioned above, it would require a 1° error in the temperature interval to explain the effect. However, all temperatures were measured with both a thermocouple and resistance thermometer which agreed exceedingly well and were, moreover, then compared with the vapor pressure of hydrogen while they remained in place on the calorimeter which still contained the sample and had not been disturbed in any way. Series 2 and 3 agree very well with each other and above 25° K. the data gradually approach coincidence with the later series.

The data of Series 4–9 are taken as representing the heat capacity of silver in selecting the values taken from a smooth curve and in calculating the entropy.

TABLE II								
	HEAT CAPACIT	TY OF LEAD						
Atomic weight $207: 0^{\circ}C = 273.10^{\circ}K$								
T VV	cal. deg. $^{-1}$	7 91-	cal. deg1					
л, љ .	gatom	· · ·	gatom -					
Se	ries 1	269.44	6.355					
64.54	5.446	277.89	6.387					
69.52	5.534	284.66	6.412					
74.84	5.603	292.60	6.377					
80.39	5.656	299.91	6.418					
86.13	5.718							
90.96	5.740	Ser	ies 2					
9 6.0 0	5.791	15.74	1.800					
101.77	5.872	19.06	2.468					
107.54	5.897	23.08	3.092					
113.39	5.931	27.78	3.689					
120.37	5.933	32.85	4.215					
127.72	5.956	37.79	4.559					
135.26	5.994	42.87	4.810					
143.40	6.038	48.23	5.046					
151.63	6.046	53.42	5.235					
160.03	6.069	58.85	5.337					
167.97	6.088							
176.40	6.138	Seri	ies 3					
184.48	6.148	15.47	1.735					
192.61	6,139	18.77	2.411					
200.75	6.164	22.74	3.039					
209.04	6.189	27.06	3.599					
217.61	6.230							
226.00	6.232	Seri	ie s 4					
234.99	6.276	14,16	1.561					
244.01	6.283	16.95	2.150					
252.58	6.327	20.11	2.667					
260.98	6.342	23.62	3.271					

The results agree quite well with those of Eucken, Clusius and Woiteneck² who measured the heat capacity of silver from 11 to 205° K. Their results are about 1% lower than the present observations over most of the range.

The results on the heat capacity of lead are given in Table II. Series 1, 2 and 3 were made in calorimeter 1. Series 4 and 5 were made in calorimeter 2.

The earlier data on the heat capacity of lead have been summarized by Rodebush and Rodebush.³ The smoothed data given in their summary are about 1.5% high at 20° K., approach agreement with the present results near 100° K. and then cross the present curve, becoming 1 to 2% low between 200 and 300° K.

TABLE III THERMOD'NAMIC PROPERTIES OF SILVER

Call deg. $=$ g-atom $=$, $=$ C $=$ 275.10 K., atomic we route 80						$(F^{0} - $
<i>T</i> , ° K .	C_p	C_{τ}	Debye	S	$(H^0)/T$	$H_0^0)/T$
15	0.160	0.160	0.98	0.054	0.040	0.014
20	.410	.410	1.08	.131	.097	.034
25	. 747	.747	1.063	.256	.192	.064
30	1.141	1.140	1.032	.427	.317	.110
35	1.580	1.578	1.023	.635	.465	.170
40	2.005	2.001	1.010	.874	. 632	.242
45	2.399	2.393	0.998	1.134	.807	.327
50	2.784	2.776	. 999	1.407	. 985	. 422
60	3.420	3.405	. 996	1.973	1.341	.632
70	3.904	3.881	. 992	2.539	1.674	.865
80	4.277	4.245	. 990	3.086	1.977	1.109
90	4.573	4.532	. 990	3.608	2.250	1.358
100	4.820	4.769	. 993	4.103	2.495	1.608
110	5.010	4.950	. 994	4.570	2.715	1.855
120	5.162	5.092	.995	5.013	2.913	2.100
130	5.289	5.210	. 996	5.431	3.091	2.340
140	5.399	5.310	.997	5.828	3.252	2.576
150	5.490	5.391	.998	6.203	3.398	2.805
160	5.569	5.461	. 999	6.559	3.531	3.028
170	5.644	5.526	1.001	6,899	3.653	3.246
180	5.712	5.584	1.004	7.224	3.766	3.458
190	5.757	5.620	1.003	7.533	3.869	3.664
200	5.800	5.653	1.003	7.830	3.965	3.865
210	5.837	5.681	1.003	8.114	4.053	4.061
220	5.873	5.708	1.003	8.387	4.135	4.252
230	5.911	5.736	1.004	8.648	4.211	4.437
240	5.950	5.765	1.006	8.901	4.283	4.618
250	5.989	5.793	1.007	9.144	4.351	4.793
260	6.025	5.819	1.009	9.380	4.414	4.966
270	6.050	5.835	1.010	9.607	4.474	5.133
280	6.068	5.843	1.009	9.828	4.531	5.297
290	6.080	5.846	1.007	10.042	4.584	5.458
298.1	6.092	5.851	1.007	10.206	4.605	5.584
300	6.095	5.852	1.007	10.248	4.634	5.614

(2) Eucken, Clusius and Woiteneck, Z. auorg. allgent. Chem., 203, 39 (1931).

(3) Rodebush and Rodebush, "I. C. T.," Vol. 5, McGraw-Hill Book Co., New York, N. Y., 1929, p. 85. Bronson and Wilson⁴ have measured the heat capacity of lead from -80 to 120° C. Their results are about 2% lower at 200° and 1% lower at 300° K. than those obtained in the present measurements.

In Tables III and IV heat capacity values taken from smooth curves through the data are presented. The values for the heat capacity at constant volume, C_v , given in column 3 were obtained by means of the empirical equation

$$C_p - C_v = ATC_p^2$$

The constant A was evaluated at ordinary temperatures by means of the thermodynamic equation

$$C_p - C_r = \alpha^2 V T / \beta$$

as in the previous paper.¹

The values of A used were

Silver: $A = 2.18 \times 10^{-5}$ g.-atom cal.⁻¹

Lead: $A = 3.45 \times 10^{-5}$ g.-atom cal.⁻¹

TABLE IV

	THERMODYNAMIC .	Pr	OPERTIES	OF	Lead	
Cal.	deg1 gatom -1, 0°C.	-	273.10°K.	. ato	omic wt.	207.22

			C_v/C_v		(Hº	- (Fº
<i>т</i> . °К.	C_p	C_v	Debye	S	$H_0^0)/T$	$H_0^0)/T$
15	1.728	1.727	1.098	0.705	0.514	0.1 9 1
20	2.632	2.627	1.025	1.341	0.940	.401
25	3.360	3.350	0.999	2.002	1.353	. 649
30	3.943	3.927	. 997	2.669	1.738	.931
35	4.369	4.346	. 995	3.311	2.085	1.226
40	4.677	4.647	. 993	3.916	2.391	1.525
45	4.910	4.873	. 992	4.479	2.659	1.820
50	5.100	5.055	. 993	5,007	2.894	2.113
60	5.361	5.301	. 993	5.962	3.285	2.677
70	5.536	5.462	. 994	6.802	3.595	3.207
80	5.661	5.573	. 996	7,550	3.846	3.704
90	5.758	5.655	. 997	8.223	4.053	4.170
100	5.838	5.720	. 999	8.834	4.228	4.606
110	5,900	5.768	1.001	9 .3 93	4.377	5.016
120	5.938	5.792	0.999	9,908	4.506	5.402
130	5.971	5.811	. 999	10.385	4.617	5.768
140	6.007	5.833	.999	10.829	4.715	6.114
150	6.039	5.850	. 999	11.244	4.802	6.442
16 0	6.070	5.863	. 999	11,635	4.880	6.755
170	6.106	5.887	1.002	12.004	4.951	7.053
180	6.135	5.901	1.003	12.354	5.016	5.338
190	6.159	5.910	1.003	12.686	5.076	7.610
20 0	6.183	5.919	1.003	13.003	5.131	7.872
210	6.207	5.927	1.004	13.305	5.181	8.124
220	6.229	5.934	1.004	13.594	5.228	8.366
230	6.250	5.940	1.004	13.872	5.274	8.598
240	6.270	5.944	1.004	14.138	5.313	8.825
250	6.301	5.958	1.006	14.395	5.352	9.043
260	6.331	5.971	1.008	14,643	5.389	9.254
270	6.363	5.985	1.010	14.882	5.425	9.457
280	6.380	5.986	1.010	15.114	5.459	9 .65 5
290	6.398	5.987	1.009	15.338	5.491	9.847
298.1	6.414	5,990	1.010	15.514	5.515	9.999
300	6.418	5,991	1.010	15.555	5.521	10.033

(4) Bronson and Wilson, Can. J. Research, 14A, 181 (1936).

July, 1941

In the fourth columns of Tables III and IV the ratio of the C_{p} to the C_{p} calculated from the Debye equation has been given.

The characteristic temperatures were calculated from the temperature where $C_{\rm p}$ reached the value $^{3}/_{2} R = 2.980$ cal. deg.⁻¹ g.-atom⁻¹. For silver this temperature was found to be 52.9° K. and the corresponding $\theta = 212.7$.

For lead $T = 22.45^{\circ}$ K. and $\theta = 9.3$.

As we have explained in the previous paper. it is not our purpose to compare our results with the Debye function, although this is the best way of doing this, but rather to use it as an idealized reference equation to facilitate the comparison of the several metals with each other.

Aluminum and copper, discussed in the previous paper,¹ and silver and lead each has a face centered cubic structure. From the comparisons of C_v/C_v Debye it may be seen that the deviations of all four substances have the same typical characteristics.

It is clearly evident from the C_v/C_v (Debye) ratios at the lower temperatures in Tables III and IV that the *a priori* probabilities or number of degrees of freedom associated with the various fundamental frequencies are not those corresponding to a structureless solid as the Debye equation assumes. That this would be found to be the case has recently become evident from the calculations of Blackman⁵ and particularly from the theoretical investigation of Fine,6 who has made a calculation of the heat capacity of tungsten using only the elastic properties. This substance crystallizes in the body-centered cubic form which complicates comparison with the present case but the same general features are evident at low temperatures where quantum differences are able to stand out. As in the present case the heat capacity at the lower temperatures decreases to values considerably below those which would be calculated from a Debye θ , which satisfies the experimental results at higher temperatures. There is of course no question but that the Debye curve correctly represents the contribution to the heat capacity due to vibrations of the lattice at

(5) Blackman, Proc. Roy. Soc. (London), A148, 365, 384 (1935);
149, 117, 126 (1935).

(6) Fine, Phys. Rev., 56, 355 (1939).

very low temperatures but the θ which will represent the limiting behavior is considerably greater than the value which best represents the upper portion of a heat capacity curve. This greater value of the Debye θ should correspond to that derived from the elastic properties of the material.

We note that Dr. Fine⁶ indicates an interest in extending his calculations to crystals of the face centered cubic type such as we have investigated and it is hoped that the present data will assist in determining the characteristics of the fundamental frequencies involved.

Although C_{τ}/C_{τ} (Debye) values for the four substances all have the same general characteristics the maxima which occur in the neighborhood of $T/\theta = 0.1$ are higher and appear at lower temperatures as the value of the characteristic θ increases.

Clerical assistance of the Works Progress Administration is gratefully acknowledged (Official Project No. 165-1-08-73 (Unit C-2)).

Summary

The heat capacities of single crystal silver and lead have been measured from 15° to 300° K.

Values of the thermodynamic quantities S, $(H-H_0^0)/T$ and $(F-H_0^0)/T$ have been tabulated to 300° K.

The entropies of silver and lead were found to be 10.21 and 15.51 cal. deg.⁻¹ mole⁻¹, respectively, at 298.1° K. These entropy values are the ones to be used in ordinary thermodynamic calculations and therefore do not include nuclear spin or isotopic contributions to the absolute entropy.

Heat capacity data for aluminum, copper, silver and lead, all of which form face centered cubic crystals are compared by means of the Debye equation used as an idealized limiting case.

It has been found that the values of C_v/C_v (Debye) pass through a maximum in the temperature region near $T/\theta = 0.1$, however, the maxima are higher and occur at lower temperatures for the smaller values of the characteristic temperature θ when this quantity is determined by means of the temperature where $C_v = \frac{3}{2}R$.

BERKELEY, CALIF.

RECEIVED MARCH 19. 1941